On Ω-stability and structural stability of endomorphisms satisfying Axiom A
نویسندگان
چکیده
منابع مشابه
Structural stability of attractor-repellor endomorphisms with singularities
We prove a theorem on structural stability of smooth attractor-repellor endomorphisms of compact manifolds, with singularities. By attractor-repellor, we mean that the non-wandering set of the dynamics f is the disjoint union of a repulsive compact subset with a hyperbolic attractor on which f acts bijectively. The statement of this result is both infinitesimal and dynamical. Up to our knowledg...
متن کاملOn the absoluteness of orbital ω-stability
We show that orbital ω-stability is upwards absolute for א0-presented abstract elementary classes satisfying amalgamation and the joint embedding property (each for countable models). We also show that amalgamation does not imply upwards absoluteness of orbital ω-stability by itself. Suppose that k = (K, k) is an abstract elementary class (or AEC; see [1, 8] for a definition), and let (M,a,N) a...
متن کاملC stability and Ω - stability conjectures for flows
There is a gap in the proof of Lemma VII.4 in [1]. We present an alternative proof of Theorem B (C 1 Ω-stable vector fields satisfy Axiom A) in [1]. The novel and essential part in the proof of the stability and Ω-stability conjectures for flows is the connecting lemma introduced in [1]. A mistake in the proof of the last conjecture was pointed out to me by Toyoshiba [5], who later also provide...
متن کاملSrb Measures for Axiom a Endomorphisms
Let Λ be a basic set of an Axiom A endomorphism on ndimensional compact Riemannian manifold. In this paper, we provide equivalent conditions for the existence of a SRB measure on Λ. In particular, we show that under the assumption that the closure of the postcritical set of f is disjoint from Λ, the existence of a SRB measure is equivalent to the condition that the stable set of Λ has packing d...
متن کاملstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 1977
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm-60-1-61-77